\(\int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx\) [1444]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 563 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx=-\frac {\left (2 A b^2+3 a^2 C-b^2 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b^2 \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {\left (2 A b^2+a (3 a+b) C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b^2 \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {3 a \sqrt {a+b} C \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^3 d \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (2 A b^2+3 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{b^2 \left (a^2-b^2\right ) d} \]

[Out]

-2*(A*b^2+C*a^2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)+(2*A*b^2+3*C*a^2-C*b^2)*sin(
d*x+c)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2)/b^2/(a^2-b^2)/d-(2*A*b^2+3*C*a^2-C*b^2)*csc(d*x+c)*EllipticE((a
+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+
b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b^2/d/(a+b)^(1/2)/sec(d*x+c)^(1/2)+(2*A*b^2+a*(3*a+b)*C)*csc(d*x+c)
*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-se
c(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b^2/d/(a+b)^(1/2)/sec(d*x+c)^(1/2)+3*a*C*csc(d*x+c)*El
lipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x
+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.67 (sec) , antiderivative size = 563, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {4306, 3127, 3140, 3132, 2888, 3077, 2895, 3073} \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx=-\frac {\left (3 a^2 C+2 A b^2-b^2 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a b^2 d \sqrt {a+b} \sqrt {\sec (c+d x)}}+\frac {\left (3 a^2 C+2 A b^2-b^2 C\right ) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}{b^2 d \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\left (a C (3 a+b)+2 A b^2\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a b^2 d \sqrt {a+b} \sqrt {\sec (c+d x)}}+\frac {3 a C \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^3 d \sqrt {\sec (c+d x)}} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

-(((2*A*b^2 + 3*a^2*C - b^2*C)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt
[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*
x]))/(a - b)])/(a*b^2*Sqrt[a + b]*d*Sqrt[Sec[c + d*x]])) + ((2*A*b^2 + a*(3*a + b)*C)*Sqrt[Cos[c + d*x]]*Csc[c
 + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[
(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*b^2*Sqrt[a + b]*d*Sqrt[Sec[c + d*x]])
 + (3*a*Sqrt[a + b]*C*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(S
qrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c +
 d*x]))/(a - b)])/(b^3*d*Sqrt[Sec[c + d*x]]) - (2*(A*b^2 + a^2*C)*Sin[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Co
s[c + d*x]]*Sqrt[Sec[c + d*x]]) + ((2*A*b^2 + 3*a^2*C - b^2*C)*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin
[c + d*x])/(b^2*(a^2 - b^2)*d)

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3127

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n
 + 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2
*(m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3132

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3140

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[
e + f*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[1/(2*d), Int[(1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Si
n[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d)
)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0
] && NeQ[c^2 - d^2, 0]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{3/2}} \, dx \\ & = -\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} \left (A b^2+a^2 C\right )-\frac {1}{2} a b (A+C) \cos (c+d x)-\frac {1}{2} \left (2 A b^2+3 a^2 C-b^2 C\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (2 A b^2+3 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{b^2 \left (a^2-b^2\right ) d}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} a \left (2 A b^2+3 a^2 C-b^2 C\right )+b \left (A b^2+a^2 C\right ) \cos (c+d x)+\frac {3}{2} a \left (a^2-b^2\right ) C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{b^2 \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (2 A b^2+3 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{b^2 \left (a^2-b^2\right ) d}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} a \left (2 A b^2+3 a^2 C-b^2 C\right )+b \left (A b^2+a^2 C\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{b^2 \left (a^2-b^2\right )}-\frac {\left (3 a C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 b^2} \\ & = \frac {3 a \sqrt {a+b} C \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^3 d \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (2 A b^2+3 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{b^2 \left (a^2-b^2\right ) d}-\frac {\left (a \left (2 A b^2+3 a^2 C-b^2 C\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b^2 \left (a^2-b^2\right )}+\frac {\left ((a-b) \left (2 A b^2+a (3 a+b) C\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{2 b^2 \left (a^2-b^2\right )} \\ & = -\frac {\left (2 A b^2+3 a^2 C-b^2 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b^2 \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {\left (2 A b^2+a (3 a+b) C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b^2 \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {3 a \sqrt {a+b} C \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^3 d \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (2 A b^2+3 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{b^2 \left (a^2-b^2\right ) d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1155\) vs. \(2(563)=1126\).

Time = 15.70 (sec) , antiderivative size = 1155, normalized size of antiderivative = 2.05 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{b^2 \left (-a^2+b^2\right )}-\frac {2 \left (a A b^2 \sin (c+d x)+a^3 C \sin (c+d x)\right )}{b^2 \left (-a^2+b^2\right ) (a+b \cos (c+d x))}\right )}{d}+\frac {\sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (2 a A b^2 \tan \left (\frac {1}{2} (c+d x)\right )+2 A b^3 \tan \left (\frac {1}{2} (c+d x)\right )+3 a^3 C \tan \left (\frac {1}{2} (c+d x)\right )+3 a^2 b C \tan \left (\frac {1}{2} (c+d x)\right )-a b^2 C \tan \left (\frac {1}{2} (c+d x)\right )-b^3 C \tan \left (\frac {1}{2} (c+d x)\right )-4 A b^3 \tan ^3\left (\frac {1}{2} (c+d x)\right )-6 a^2 b C \tan ^3\left (\frac {1}{2} (c+d x)\right )+2 b^3 C \tan ^3\left (\frac {1}{2} (c+d x)\right )-2 a A b^2 \tan ^5\left (\frac {1}{2} (c+d x)\right )+2 A b^3 \tan ^5\left (\frac {1}{2} (c+d x)\right )-3 a^3 C \tan ^5\left (\frac {1}{2} (c+d x)\right )+3 a^2 b C \tan ^5\left (\frac {1}{2} (c+d x)\right )+a b^2 C \tan ^5\left (\frac {1}{2} (c+d x)\right )-b^3 C \tan ^5\left (\frac {1}{2} (c+d x)\right )-6 a^3 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+6 a b^2 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-6 a^3 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+6 a b^2 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+(a+b) \left (2 A b^2+3 a^2 C-b^2 C\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 b (a+b) (A b+a C) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{b^2 \left (-a^2+b^2\right ) d \sqrt {1+\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (b \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )-a \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )\right )} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(A*b^2 + a^2*C)*Sin[c + d*x])/(b^2*(-a^2 + b^2)) - (2*(a*A*b^
2*Sin[c + d*x] + a^3*C*Sin[c + d*x]))/(b^2*(-a^2 + b^2)*(a + b*Cos[c + d*x]))))/d + (Sqrt[(1 - Tan[(c + d*x)/2
]^2)^(-1)]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]*(2*a*A*b^2*Tan
[(c + d*x)/2] + 2*A*b^3*Tan[(c + d*x)/2] + 3*a^3*C*Tan[(c + d*x)/2] + 3*a^2*b*C*Tan[(c + d*x)/2] - a*b^2*C*Tan
[(c + d*x)/2] - b^3*C*Tan[(c + d*x)/2] - 4*A*b^3*Tan[(c + d*x)/2]^3 - 6*a^2*b*C*Tan[(c + d*x)/2]^3 + 2*b^3*C*T
an[(c + d*x)/2]^3 - 2*a*A*b^2*Tan[(c + d*x)/2]^5 + 2*A*b^3*Tan[(c + d*x)/2]^5 - 3*a^3*C*Tan[(c + d*x)/2]^5 + 3
*a^2*b*C*Tan[(c + d*x)/2]^5 + a*b^2*C*Tan[(c + d*x)/2]^5 - b^3*C*Tan[(c + d*x)/2]^5 - 6*a^3*C*EllipticPi[-1, A
rcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b
*Tan[(c + d*x)/2]^2)/(a + b)] + 6*a*b^2*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 -
Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 6*a^3*C*EllipticPi[-
1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a
*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 6*a*b^2*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a
+ b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c +
d*x)/2]^2)/(a + b)] + (a + b)*(2*A*b^2 + 3*a^2*C - b^2*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)
]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2
]^2)/(a + b)] - 2*b*(a + b)*(A*b + a*C)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c
+ d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)]))/(b
^2*(-a^2 + b^2)*d*Sqrt[1 + Tan[(c + d*x)/2]^2]*(b*(-1 + Tan[(c + d*x)/2]^2) - a*(1 + Tan[(c + d*x)/2]^2)))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(3289\) vs. \(2(519)=1038\).

Time = 7.99 (sec) , antiderivative size = 3290, normalized size of antiderivative = 5.84

method result size
parts \(\text {Expression too large to display}\) \(3290\)
default \(\text {Expression too large to display}\) \(3651\)

[In]

int((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*A/d/(a-b)/(a+b)*(-(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c)
)^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a-(-(1-cos(d*x+c))^2*
csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*Elli
pticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b+(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c)
)^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+
b))^(1/2))*a+(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc
(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b+(1-cos(d*x+c))^3*a*csc(d*x
+c)^3-(1-cos(d*x+c))^3*b*csc(d*x+c)^3-a*(-cot(d*x+c)+csc(d*x+c))+b*(-cot(d*x+c)+csc(d*x+c)))*((a*(1-cos(d*x+c)
)^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(1/2)*((1-cos(d*x+c))
^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4+2*b*(1-cos(d*x+c))^2*csc(d
*x+c)^2-a-b)/(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)+C/d/b^2/(a-b)/(a+b)*
(3*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+
a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-b^3*(-(1-cos(d*x+c))^2*csc(d*x+c)^
2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d
*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))-3*(1-cos(d*x+c))^5*a^2*b*csc(d*x+c)^5-(1-cos(d*x+c))^5*a*b^2*csc(d*x+c)
^5+3*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^
2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(1-cos(d*x+c))^2*a^2*b*csc(d*x+c)^2-
(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b
)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(1-cos(d*x+c))^2*a*b^2*csc(d*x+c)^2-6*(-(
1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(
a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(1-cos(d*x+c))^2*a^3*csc(d*x+c)^2-2*(-(1
-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a
+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-2*b^2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1
)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+6*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+
c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2
))*a*b^2+3*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d
*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(1-cos(d*x+c))^2*a^3*csc(d*x+c
)^2+3*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)
^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-b^2*(-(1-cos(d*x+c))^2*csc(d*
x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(
cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+b^2*a*(-cot(d*x+c)+csc(d*x+c))+(1-cos(d*x+c))^5*b^3*csc(d*x+c)^5
+3*(1-cos(d*x+c))^5*a^3*csc(d*x+c)^5-2*(1-cos(d*x+c))^3*b^3*csc(d*x+c)^3+a^2*b*(-cot(d*x+c)+csc(d*x+c))-6*(-(1
-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a
+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a^3-(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1
/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-c
sc(d*x+c),(-(a-b)/(a+b))^(1/2))*(1-cos(d*x+c))^2*b^3*csc(d*x+c)^2-2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(
(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*
x+c),(-(a-b)/(a+b))^(1/2))*(1-cos(d*x+c))^2*a^2*b*csc(d*x+c)^2-2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*
(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c
),(-(a-b)/(a+b))^(1/2))*(1-cos(d*x+c))^2*a*b^2*csc(d*x+c)^2+6*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-
cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),
-1,(-(a-b)/(a+b))^(1/2))*(1-cos(d*x+c))^2*a*b^2*csc(d*x+c)^2+2*a^2*b*(1-cos(d*x+c))^3*csc(d*x+c)^3-3*a^3*(-cot
(d*x+c)+csc(d*x+c))+b^3*(-cot(d*x+c)+csc(d*x+c)))*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x
+c)^2+a+b)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(1/2)/((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*
x+c)^4+2*b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)
^2-1))^(1/2)

Fricas [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx=\int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(3/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/((a + b*cos(c + d*x))**(3/2)*sqrt(sec(c + d*x))), x)

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2)), x)